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Systems of reacting particles, which are well mixed or distributed homogeneously in space, are commonly
modeled by deterministic rate equations. These equations, which are based on the mean-field approximation,
are valid for macroscopic systems. However, they neglect fluctuations in the particle populations. As a result,
under conditions of strong fluctuations, the reaction rates obtained from the rate equations are highly inaccu-
rate. To account for the fluctuations, stochastic methods are required. However, these methods are computa-
tionally intensive and may become infeasible for complex reaction networks. Therefore, it is useful to identify
the conditions under which the rate equations provide accurate results. Naively, one expects strong fluctuations
when the average population sizes of some of the reactants are of order one or lower. Here we present a
systematic approach, for testing the validity of the rate equations, in which we define characteristic scales in
terms of the rate constants of the network. We show that the rate equations fail to accurately reproduce the
reaction rates when the system size is reduced below these scales. Surprisingly, the rate equations are found to
be applicable in a wider range than expected. Their validity depends not only on the population sizes of the
reactive species but also on the kinetic properties of the reaction network.
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I. INTRODUCTION

Systems of interacting species are prevalent in many
fields of science, including chemistry, biology, and ecology.
Such systems can be described by networks or graphs, in
which each node represents a species and each edge repre-
sents an interaction. The interactions affect the population
sizes of the different species, which may vary as a function
of time. A common approach for the quantitative analysis of
such systems is based on rate equations, which describe the
temporal evolution of the population size of each species
�1,2�. The rate equations are deterministic in the sense that
they are based on a mean-field approach, which ignores sto-
chastic effects. Thus, they are easy to construct and highly
efficient in terms of computational resources. They provide
accurate results when the populations are large and well
mixed such that spatial inhomogeneities can be ignored.
However, the rate equation method fails when features such
as the discrete nature of the interacting species and fluctua-
tions in their populations become important. Such situations
are common in chemical and biological processes. For ex-
ample, in surface catalysis systems, the surface is often par-
titioned into facets on nanometric dimensions, with little dif-
fusion between the facets. Under these conditions the
number of reactive atoms and molecules residing on a facet
is small and fluctuations are strong �3–8�. Another important
example of chemical reaction networks that require stochas-
tic analysis appears in the field of interstellar chemistry
�9–11�. Some of the chemical reactions in interstellar clouds
take place on the surfaces of dust grains �12,13�. These in-
clude molecular hydrogen formation �14–17� as well as re-
action networks that form ice mantles and certain organic
molecules. Due to the submicron size of the grains and the
low gas density, the populations of reactive species per grain
are small and strongly fluctuate. Therefore, rate equations are
not suitable for the evaluation of reaction rates in these sys-
tems �18–21�. Stochastic fluctuations also turn out to play an

important role in biochemical networks in living cells
�22–24�. Recent advances in quantitative measurements of
gene expression at the single-cell level enable to analyze
these fluctuations and to examine their effect on cell function
�25,26�.

To obtain accurate results in simulations of strongly fluc-
tuating networks of interacting species, one needs to use sto-
chastic methods. Such methods can be implemented either
by the direct integration of the master equation �27–31� or by
Monte Carlo simulations �32–35�. However, these methods
are computationally expensive. For example, the master
equation is useful for the simulation of simple chemical re-
action networks, which involve a small number of reactive
species. However, as the number of chemical species in-
creases, the number of coupled equations quickly prolifer-
ates. This makes the master equation infeasible for complex
reaction networks �36,37�. Monte Carlo methods are also
limited by the need to accumulate large amounts of statistical
data in order to obtain accurate values for the average popu-
lation sizes and reaction rates. Therefore, efforts have been
made to develop efficient approximations of the master equa-
tion �38–47�. For example, the method presented in Refs.
�41–43� is based on dimensional reduction of the master
equation. The method of Refs. �44–46� is based on moment
equations derived from the master equation, using a suitable
truncation. Recently, hybrid methods �48–50� which dynami-
cally apply either stochastic or deterministic methods, have
been introduced.

The question of identifying the crossover of a system
from deterministic to stochastic behavior is of general impor-
tance. Both the accuracy and efficiency of the simulation of a
particular system may be considerably improved by using
the most appropriate simulation method for given conditions.
The rate equation method is advantageous in the determinis-
tic case, while the stochastic methods are required when the
system exhibits large fluctuations. In practice, the simulation
method is often chosen according to insight obtained through
trial and error. However, recent efforts have been made in
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order to formulate more rigorous rules for the selection of the
most appropriate simulation method �51�. In many cases one
is primarily interested in the average population sizes of the
interacting species and the reaction rates. It would thus be
beneficial to formulate guidelines for the conditions under
which the rate equations can be used to accurately calculate
these quantities.

In this paper we formulate criteria for the validity of the
rate equations for the calculation of reaction rates in reaction
networks under steady-state conditions. To this end, we con-
sider a class of spatially homogenous �well-mixed� systems
involving n distinct species, labeled Xi, i=1, . . . ,n. Particles
of each species are introduced into the system at a rate Gi
�s−1�, referred to as the generation rate. Each particle spon-
taneously degrades or leaves the system after an average life-
time of ti=1 /Di, where Di �s−1� represents the degradation
rate of an Xi particle. In addition, pairs of particles may
encounter each other and react. The reaction rate between a
pair of particles of species Xi and Xj is denoted by Kij �s−1�.

The expressions used in order to calculate the average
reaction rates highlight the fundamental differences between
the rate equation approach and the stochastic approach. The
rate equation method is based on the mean-field approxima-
tion, which identifies the instantaneous population size, Ni,
of species Xi, with the ensemble average �Ni�. According to
this assumption, the average number of distinct pairs of Xi
and Xj particles in the system is �Ni��Nj�. Therefore, the re-
action rate between particles of these two species is given by

Rij = � Kii�Ni�2 for i = j ,

Kij�Ni��Nj� for i � j .
� �1�

In the stochastic approach, the actual number of particles of
each species which are simultaneously present in the system
is taken into account. Consequently, the reaction rates in the
stochastic approach are

Rij = �Kii�Ni�Ni − 1�� for i = j ,

Kij�NiNj� for i � j .
� �2�

Note that in the expressions for Rii, a factor of 1 /2 was
integrated into the rate constant Kii. The temporal evolution
of the average particle populations can be described by the
general equation

�Ni�t�� = Gi − Di�Ni�t�� − 2Rii�t� − 	
j�i

Rij�t� + 	
i+

Ri+�t� ,

�3�

where i=1, . . . ,n. The first and second terms in Eq. �3� de-
scribe the addition and degradation of Xi particles, respec-
tively. The third and fourth terms represent the removal of Xi
particles by reactions. The last term accounts for all the pro-
cesses in which Xi particles are formed. Equation �3� is ap-
plicable to both deterministic and stochastic calculations, de-
pending on the form of the reaction terms R, as described
above.

The paper is organized as follows. In Sec. II we consider
a simple dimerization reaction and identify the range of pa-
rameters in which strong fluctuations render the rate equa-
tions invalid. In Sec. III we introduce the system-size ap-

proach, in which the boundary between the deterministic and
stochastic regimes in the parameter space is derived in a
more systematic fashion. This approach enables us to
broaden the analysis to more complex reaction systems, as
shown in Sec. IV. The results are discussed and summarized
in Sec. V.

II. SINGLE SPECIES NETWORK

The simplest reaction network consists of a single reactive
species X1, which undergoes dimerization X1+X1→X2. For
simplicity we assume that the X2 molecules do not take part
in further reactions. In this case the network can be described
by a single rate equation �52�

�Ṅ1� = G1 − D1�N1� − 2K11�N1�2. �4�

A more complete description of the system is given by the
master equation, which expresses the temporal evolution of
the probability Pt�N1� of finding exactly N1 particles in the
system at time t. For the single-species system, the master
equation takes the form �27,28,53�

Ṗ�N1� = G1�P�N1 − 1� − P�N1�� + D1��Ṅ1 + 1�P�N1 + 1�

− N1P�N1�� + K11��N1 + 2��N1 + 1�P�N1 + 2�

− N1�N1 − 1�P�N1�� , �5�

where N1=0 ,1 ,2 , . . .. We can compare the master equation
with the rate equation by deriving an equation for the first
moment of P�N1� �44�. This is done by taking the time de-

rivative of �N1�=	N1
N1P�N1�, and inserting Ṗ�N1� from Eq.

�5�. After performing the summation over the values of N1,
one obtains the equation

�Ṅ1� = G1 − D1�N1� − 2K11�N1�N1 − 1�� , �6�

which can be easily compared with Eq. �4�.
The rate equation �4� and the master equation �5� include

three rate constants: G1, D1 and K11. Therefore, their steady-

state solutions, �N1�=0 and Ṗ�N1�=0, respectively, can be
fully characterized by two parameters, which represent ratios
between these three rates. We have chosen the ratios G1 /D1
and D1 /K11, the significance of which is as follows. The first
parameter

S11
+ = G1/D1, �7�

represents the number of X1 particles added to the system
during the lifetime of one such particle. This value approxi-
mates the average number of potential reaction partners per
X1 particle. The second parameter

S11
− = D1/K11, �8�

is approximately the number of X1 particles that degrade dur-
ing the average time it takes an X1 particle to undergo a
reaction. These two parameters are used in order to charac-
terize the dynamics of the system. If S11

+ �S11
− , the number of

potential partners per particle is larger than the number that
leave before it reacts. The range of parameters in which this
situation occurs is called the reaction domain, since most
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particles in the system undergo reaction rather than degrada-
tion. In the opposite situation, where S11

+ �S11
− , most particles

leave the system through degradation before a reaction can
take place. Thus, this range of parameters is called the deg-
radation domain.

The rate equation method is expected to fail in the limit of
small population sizes, where stochastic effects become sig-
nificant. Naively, one may expect the rate equations to be-
come inaccurate when �N1��1. This is not a good criterion
for several reasons. First, this condition cannot be easily
evaluated in advance, based on the parameters alone: It re-
quires one to actually solve the rate equations. Second, we
will show below that it is possible to find a more accurate
division between the deterministic and the stochastic regimes
in the parameter space. Interestingly, it is found that in some
cases the rate equations are applicable even for a range of
parameters in which �N1� is significantly smaller than 1.

In order to characterize the stochastic range in a more
precise manner, we compare the approximate results ob-
tained from the rate equations with the exact results obtained
from the master equation. More specifically, we use the ana-
lytical solution of the master equation �5�, presented in Refs.
�28,53�. In Fig. 1�a� we present the average population size
�N1�, obtained from the master equation under steady-state
conditions, as a function of the parameters S11

+ and S11
− . The

color code represents the function y=log10��N1��. It is found
that �N1��1 �or y�0� in a broad range of parameters cov-
ering the bottom half of the plot and the upper-left corner
�dark shades�. In Fig. 1�b� we compare the results for the
reaction rate, R11, obtained from the rate equation and the
master equation, under steady-state conditions. The color
code represents the function z=log10�R11

rate /R11
master�. When the

two results do not coincide, the rate equation is found to
overestimate the reaction rate, namely R11

rate�R11
master, and z

�0. The rate equation provides a good approximation for
R11 in the dark region, where z�1, which is roughly
characterized by

max�S11
+ ,S11

− � � 1. �9�

If the condition �N1��1 was an accurate criterion for the
validity of the rate equations, there would be no overlap
between the dark region in Fig. 1�a� �where �N1��1� and the
dark region in Fig. 1�b� �where the rate equation results are
valid�. However, there is a large domain of such overlap in
the lower-right quarter of the graph and a smaller one in the
upper-left quarter. This indicates that the domain of validity
of the rate equation is broader than expected.

The result presented in Eq. �9� can be intuitively under-
stood as follows. In the reaction-dominated region �above the
dashed line in Fig. 1�b��, most particles leave the system
through reaction. In this case, the rate equation provides a
good approximation for the reaction rate if the stochastic
effects are small, namely if the average number of potential
partners for reaction per particle is larger than 1 �S11

+ �1�. In
the degradation-dominated region �below the dashed line in
Fig. 1�b��, the primary process is degradation. The rate equa-
tion solution and the master equation solution both converge
toward R11→0 as the degradation process becomes increas-
ingly efficient. As can be seen by comparison of Eqs. �4� and

�6�, When the reaction rate becomes very low, the rate equa-
tion results coincide with those of the master equation. We
can roughly characterize this region by S11

− �1.

III. SYSTEM-SIZE APPROACH

The steady state of the system described above is fully
determined by the parameters S11

+ =G1 /D1 and S11
− =D1 /K11.

This allows us to characterize the stochastic properties of this
system through simple two-dimensional plots, such as those
shown in Fig. 1. More complex networks involve too many
parameters to allow such graphical analysis. Consequently, a
different approach is required in order to formulate condi-
tions similar to Eq. �9� for more general reaction networks.
In order to find such conditions, we examine the dependence
of the reaction rates on the system size �. Depending on the
system being considered, the size � may refer to its volume,

10
−2

10
−1

10
0

10
1

10
2

10
−2

10
−1

10
0

10
1

10
2

S
11
−

S 11+

−1.5

−1

−0.5

0

0.5

1

1.5

10
−2

10
−1

10
0

10
1

10
2

10
−2

10
−1

10
0

10
1

10
2

S
11
−

S 11+

0

0.2

0.4

0.6

0.8

1

1.2

(b)

(a)

FIG. 1. �Color online� �a� The function y=log10��N1�� in the
steady state from the exact master equation solution vs the rate
ratios S11

+ =G1 /D1 and S11
− =D1 /K11. The dark region represents the

values for which �N1��1. �b� The function z=log10�R11
rate /R11

master� vs
S11

+ and S11
− under steady-state conditions. The dark region repre-

sents the values for which the rate equation method is accurate. This
area can be roughly characterized as max�S11

+ ,S11
− ��1. The black

dashed line separates the reaction domain �upper triangle� from the
degradation domain �lower triangle�.
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area, or the number of discrete sites in which particles may
reside. In general, we denote the units of � by ��� �which
could represent, for example, cm2 or cm3, depending on the
system�. In this analysis the rate constants are assumed to
relate to � as follows. The generation rate Gi of species Xi is
considered to be proportional to � according to

Gi = gi� , �10�

where gi �s−1���−1� is a constant. An example of such a
system is a surface exposed to a flux of particles. The reac-
tion rate constant, Kij, is taken to be inversely proportional to
�, namely

Kij =
kij

�
. �11�

where kij �s−1���� is a constant. This is the case, for ex-
ample, in a system of particles which diffuse randomly on a
surface and must encounter each other in order to react �a
more precise evaluation of the reaction rate constant in the
case of surface diffusion is given in Refs. �54,55��. The deg-
radation rate Di, which represents the inverse of the average
lifetime of a single particle, is assumed to be independent of
the system size. Therefore, the system can be fully described
by the size-independent parameters gi, kij, and Di, and the
system size �. It is important to note that these assumptions
have been made for the sake of convenience and do not
affect the final conclusions, which can be formulated in
terms of the general parameters Sij

�.
The rate equation method is based on the mean-field ap-

proximation, according to which the discrete particles can be
replaced by a uniform density �i of particles spread through-
out the system. The average particle population is thus pro-
portional to the system size,

�N� = �i� . �12�

Substituting �i� for �N� in Eq. �1�, we find that in the rate
equation approach the reaction rate is also proportional to the
system size

Rij = � �kii�i
2�� for i = j ,

�kij�i� j�� for i � j .
� �13�

In a large system, which contains many particles, the
mean-field approximation is valid. However, as � is reduced
�keeping the densities �i constant�, fluctuations in the number
of particles become increasingly significant. Such conditions
may also be reached by decreasing the densities �i for a fixed
system size. However, taking the system size as the control
parameter is more convenient for our analysis. The effects of
fluctuations are most straightforward when the system is
small enough that �Ni��1. Most of the time, such a system
contains no more than one reactive particle, so no reaction
can occur. However, the mean-field approximation attributes
a nonzero reaction rate to the system. Generally, if the sys-
tem is sufficiently small, the mean-field approximation will
overestimate the reaction rate �20,21� and the actual reaction
rate will no longer be proportional to �.

In the analysis below, we will try to identify the system
size � above which the mean-field approximation is valid

and the rate equations are applicable. To this end, it is useful
to consider the solution of the moment equations. These
equations are constructed from the master equation, using a
suitable truncation �44–46�. The moment equations are accu-
rate for small systems in which the populations of reactive
species are small. Depending on the network parameters, the
moment equations may be valid for large systems as well
�46�.

The single-species system considered above can be de-
scribed by the following set of moment equations �44�;

�Ṅ1� = G1 − D1�N1� − 2K11��N1
2� − �N1�� ,

�Ṅ1
2� = G1 + �2G1 + D1��N1� − 2D1�N1

2� − 4K11��N1
2� − �N1�� .

�14�

The reaction rate, R11=K11��N1
2�− �N1��, can be obtained by

solving these two equations. In order to isolate the effect of
the system size, we write the steady-state reaction rate, ob-
tained from the moment equations, using the size-
independent parameters �44,46�,

R11
moment =

g1
2

D1

 �2

�11
� , �15�

where

�11 = 1 + 2
�

�D1/g1�
+

�

�k11/D1�
. �16�

This expression reveals a dependence on two characteristic
scales,

�11
+ =

D1

g1
=

�

S11
+ ,

�11
− =

k11

D1
=

�

S11
− , �17�

which represent the main features of the system, indepen-
dently of the system size �53�. Thus, these scales serve as
yardsticks for the evaluation of the system size. According to
Eq. �16�, the system size � is considered to be large if it is
significantly larger than either �11

+ or �11
− . In a large system,

�11 is proportional to �. Thus, according to Eq. �15�,
R11

moment��. We can similarly conclude that if �
�min��11

+ ,�11
− �, the system is considered to be small. In this

case, �11 is only weakly dependent on � and therefore
R11

moment��2.
We now propose that this classification of large and small

systems also applies as a criterion for the validity of the
mean-field approximation. This leads to the conclusion that
the condition for the use of the rate equations to evaluate the
reaction rate is

� � min��11
+ ,�11

− � . �18�

This condition is identical to Eq. �9�, which was found em-
pirically from Fig. 1. This result is illustrated by two ex-
amples in Fig. 2. In these examples, the steady-state reaction
rate is shown as a function of the system size �. The � axis
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in each of these plots corresponds to a diagonal line in the
plane of Fig. 1. The rate equation results �solid line� are
compared to the stochastic results, obtained from Monte
Carlo simulations �circles�. The moment equation results are
also shown �dashed line� for comparison. In addition, the
characteristic scales �11

+ and �11
− appear as vertical dotted

lines. In each of the two examples, the rate equation results
are accurate in the region ��min��11

+ ,�11
− �. When � ap-

proaches the smaller of the two characteristic scales the ac-
tual reaction rate obtained from the stochastic methods
ceases to be proportional to � and the rate equation results
are not valid. This is in agreement with Eq. �18�. In Fig. 2�a�
the system is in the reaction domain, namely �11

+ ��11
− . In

Fig. 2�b� the system is in the degradation domain, where
�11

+ ��11
− .

The Monte Carlo results presented throughout this paper
were obtained using the Gillespie algorithm �32,33�. The
simulation is set in the space spanned by the discrete states
of the system, corresponding to the values Ni, i=1, . . . ,n.
The simulation consists of a generalized random walk be-
tween states which are connected by different processes,
weighted by their rates. The Monte Carlo data provides the
probability of the system to be in each state. The average
values obtained from this data converge towards the exact
stochastic solution given by the master equation.

IV. GENERALIZATION TO MORE COMPLEX NETWORKS

We now extend the analysis of the preceding section to
more complex reaction networks. As a first step, we consider
a simple system involving two reactive species X1 and X2.
Particles of species Xi, i=1,2, are added to the system at a
constant rate Gi �s−1�, and undergo degradation at a rate Di
�s−1�. In addition, two particles may react according to X1
+X2→X3 with a rate constant K12 �s−1�. For simplicity, we
assume that the product species X3 is not reactive and has no
further role in the evolution of the system. Under these as-
sumptions, the rate equations take the form

�Ṅ1� = G1 − D1�N1� − K12�N1��N2� ,

�Ṅ2� = G2 − D2�N2� − K12�N1��N2� . �19�

To extend the system-size analysis, we define two parameters
for each of the reactive species, which provide the ratios
between the rates of different processes,

X1 → � S12
+ = G2/D1,

S12
− = D2/K12,

�
X2 → � S21

+ = G1/D2,

S21
− = D1/K12.

� �20�

The parameter Sij
+ represents the number of potential reaction

partners of type Xj per Xi particle. The parameter Sij
− repre-

sents the number of Xj particles that leave the system in the
average time it takes an Xi particle to undergo a reaction.
Therefore, if Sij

+ �Sij
− then the removal of particles of species

Xi from the system is dominated by the reaction process
rather than by degradation. In the opposite case, Sij

+ �Sij
−, the

removal of Xi particles is dominated by degradation.
Implementing the system-size approach, we use the solu-

tion of the moment equations to identify the domain in which
the rate equations accurately approximate the reaction rate.
The moment equations for this system are �46�

�Ṅ1� = G1 − D1�N1� − K12�N1N2� ,

�Ṅ2� = G2 − D2�N2� − K12�N1N2� ,

�N1N2
˙ � = G1�N2� + G2�N1� − �D1 + D2 + K12��N1N2� .

�21�

Expressing the steady-state reaction rate, obtained from the
solution of these equations, in terms of the size-independent
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FIG. 2. The reaction rate R11 vs system size � for the reaction
X1+X1→X2, under steady-state conditions. The solution of the rate
equation �solid line� is compared with the results of the stochastic
simulation �circles�. The solution of the moment equations �dashed
line� appears as well. Examples from both the reaction domain
�11

+ ��11
− �a� and the degradation domain �11

+ ��11
− �b� are pre-

sented. These results demonstrate that the solution of the rate equa-
tions accurately approximates the exact solution if ��min
��11

+ ,�11
− �.
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parameters, g1 ,g2 ,D1 ,D2 and k12=K12 /�, and the system
size �, we find that

R12
moment = g1g2
 1

D1
+

1

D2
�
 �2

�12
� , �22�

where

�12 = 1 +
�

�D1/g2�
+

�

�D2/g1�
+

�

�k12/D2�
+

�

�k12/D1�
.

�23�

The dependence of R12
moment in Eq. �22� on the system size

appears only in the ratio �2 /�12. This dependence is deter-
mined by the four characteristic scales, which appear in Eq.
�23�, namely �12

+ =� /S12
+ , �21

+ =� /S21
+ , �12

− =� /S12
− , and

�21
− =� /S21

− . According to our hypothesis that the rate equa-
tions are accurate when R12

moment��, the condition for the
validity of the rate equations is

� � min��12
+ ,�12

− ,�21
+ ,�21

− � . �24�

This condition is demonstrated in Fig. 3. In Fig. 3�a� both
species are in the reaction domain, namely �ij

+ ��ij
−. In Fig.

3�b� both species are in the degradation domain, namely
�ij

+ ��ij
−. In both examples, the rate equations become inac-

curate as � approaches the smallest of the four scales �12
+ ,

�12
− , �21

+ , and �21
− .

A. Networks with multiple reactions

Both systems considered thus far involve a single reac-
tion. In order to generalize our analysis to more complex
networks, we must examine a system with more than one
reaction. Thus, we consider a system of three species X1, X2,
and X3, with two reactions X1+X2→X4 and X1+X3→X5.
The rate equations that describe this system are

�Ṅ1� = G1 − D1�N1� − K12�N1��N2� − K13�N1��N3� ,

�Ṅ2� = G2 − D2�N2� − K12�N1��N2� ,

�Ṅ3� = G3 − D3�N3� − K13�N1��N3� . �25�

In the simpler systems described above the kinetic behavior
of each species was determined by the comparison of the
reaction rate and the degradation rate of that species. When a
certain species takes part in more than a single reaction, one
needs to separately compare its degradation rate with the
reaction rate of each of these reactions. Since each reaction
involves two species, it is characterized by four rate-ratio
parameters of the form

R12 → �S12
+ ,S12

− for X1,

S21
+ ,S21

− for X2,
�

R13 → �S13
+ ,S13

− for X1,

S31
+ ,S31

− for X3.
� �26�

The comparison between the parameters Sij
+ and Sij

− deter-
mines the relative strengths of the reaction Rij and the deg-

radation of the species Xi. For instance, if S12
+ �S12

− , the X1
species has a stronger tendency to react with X2 than to de-
grade. This is independent of the strength of the reaction of
X1 with X3, which is determined by S13

+ and S13
− , or the

strength of X1+X2 with regard to X2, which is determined by
S21

+ and S21
− .

Employing the system-size approach, we are interested in
the steady-state solution of the moment equations for this
system, which take the form �46�

�Ṅ1� = G1 − D1�N1� − K12�N1N2� − K13�N1N3� ,

�Ṅ2� = G2 − D2�N2� − K12�N1N2� ,

�Ṅ3� = G3 − D3�N3� − K13�N1N3� ,
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FIG. 3. The reaction rate R12 vs system size � for the two-
species reaction network, under steady-state conditions. The solu-
tion of the rate equation �solid line�, stochastic simulation �circles�,
and the moment equations �dashed line� are shown. In example �a�
both species are in the reaction domain, and in �b� both are in the
degradation domain. Both examples demonstrate that the rate equa-
tions are accurate when ��min��12

+ ,�12
− ,�21

+ ,�21
− � and the actual

reaction rate is proportional to �.
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�N1N2
˙ � = G1�N2� + G2�N1� − �D1 + D2 + K12��N1N2� ,

�N1N3
˙ � = G1�N3� + G3�N1� − �D1 + D3 + K13��N1N3� .

�27�

In this case, it is not possible to derive simple expressions for
the steady-state reaction rates from these moment equations.
However, under steady-state conditions it is possible to ex-
press the reaction rate R12=K12�N1N2� in terms of R13
=K13�N1N3�, according to

R12
moment = g1g2� 1

D1

1 −

r13
moment

g1
� +

1

D2

 �2

�12
� , �28�

where r13=R13 /�. Note that the expression for R13
moment can

be obtained in a similar fashion. Equation �28� is similar in
form to Eq. �22�, except for the term r13

moment /g1. In systems
which involve only one reaction, the dependence of the
steady-state reaction rate Rij

moment on the system size is en-
tirely determined by the ratio �2 /�ij. However, the inclusion
of a second reaction Xi+Xk adds a dependence on rik

moment,
which, in general, may be dependent on �. The analysis is
further complicated by the fact that the moment equations
may become inaccurate in the large � limit as the reaction
network becomes more complex.

The central factor in evaluating the system-size depen-
dence in Eq. �28� is the importance of the term r13

moment /g1. If
most X1 particles react with particles of species X3, then
r13

moment /g1→1, and its dependence on � may have a large
influence on R12

moment. On the other hand, if other processes
dominate the X1 population, then r13

moment /g1�1, and can be
neglected. The strength of the reaction process can be
roughly estimated according to the ratio �13

− /�13
+ . If

�13
− /�13

+ �1, only a minority of the X1 particles are able to
find an X3 particle to react with. Therefore, the value of
r13

moment /g1 is small. In the opposite case, �13
− /�13

+ 	1, the X1
particles have ample opportunity to react with X3 particles.
However, if �12

− /�12
+ ��13

− /�13
+ , many X1 particles will react

with X2 particles instead, thus reducing the value of
r13

moment /g1. The limit r13
moment /g1→1 may be reached if

�13
− /�13

+ 	1, and �12
− /�12

+ ��13
− /�13

+ .
When the X1 species is largely dominated by degradation,

namely, �1j
− /�1j

+ �1 for j=2,3, the coupling between the
two reactions is reduced and the analysis of the system can
be simplified. In this case, r12 and r13 are both much smaller
than g1 and their dependence on the system size does not
affect the reaction rates. Consequently, Eq. �28� is effectively
reduced to the expression �22� for the reaction rate in a two-
species system. Therefore, the dependence of each rate
Rij

moment in the three-species system on � is determined in the
same manner as the single rate in the two-species system.
Defining

�ij
min = min��ij

+,�ij
−,� ji

+,� ji
−� , �29�

we conclude that the rate equations may be used for the
calculation of Rij as long as the system size satisfies

� � �ij
min. �30�

An example of such a system, where �12
− /�12

+ =10 and
�13

− /�13
+ =0.02 is shown in Fig. 4. The steady-state value of

R12 versus � is shown in Fig. 4�a�. As in the two species
system, the rate equation results for R12 are valid as long as
���12

min. The inset shows the value of r12 /g1 vs �, which is
smaller than 1 by at least an order of magnitude. It is clear
from Fig. 4�b� that the crossover to the stochastic regime
with respect to R13 takes place at �=�13

min. The inset shows
the ratio r13 /g1, which is much smaller than 1.

When the X1 population is dominated by one or more
reactions, it becomes more difficult to identify the boundary
of the stochastic domain for each reaction separately. This is
due to the fact that the system size dependence of R12, given
by Eq. �28�, may be influenced by the term r13

moment /g1. Even
a relatively simple network, such as this three species sys-
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FIG. 4. Steady-state reaction rates �a� R12 and �b� R13 vs system
size � in the three species reaction network. The solution of the rate
equation �solid line�, stochastic simulation �circles�, and the mo-
ment equations �dashed line� are shown. The inset plots show the
ratios �a� r12 /g1 and �b� r13 /g1, which are both significantly smaller
than 1. Therefore, the rate equations provide an accurate approxi-
mation of each rate Rij if the condition ���ij

min is fulfilled.
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tem, involves too many factors to accurately determine the
point at which the rate equation solution begins to deviate
from the exact solution. However, we can find an upper
bound for this point. To this end we employ several assump-
tions regarding the behavior of the system in two limits.

According to our analysis of simpler systems, the entire
system is in the stochastic limit when

Rij
moment � �2 �31�

for both reactions. This is the case if

� � min��12
min,�13

min� , �32�

since most particles leave the system by degradation before
they have a chance to undergo reaction. Therefore, both r12
and r13 are much smaller than g1, and can be neglected.
Furthermore, under the condition of Eq. �32�, both param-
eters �12 and �13 are �1 �see Eq. �23��. As apparent from
Eq. �28�, this means that both R12 and R13 are in the stochas-
tic limit.

For large systems we assume that fluctuations in the par-
ticle populations are negligible. Therefore, it is generally as-
sumed that the rate equations are accurate in the large system
limit, although this limit is usually determined rather heuris-
tically. Based on the system-size approach, we consider the
system to be large if � is larger than the minimal scales
associated with both reactions,

� � max��12
min,�13

min� . �33�

This also corresponds to the domain in which, for both reac-
tions,

Rij
moment � � , �34�

although the solution of the moment equations may not be
accurate in this limit. In this domain, the deterministic mean-
field approximation is valid for both reactions, and the rate
equations may be used to calculate both reaction rates.

These assumptions are justified regardless of which pro-
cess dominates the population size of each particle species.
As we have seen, if both reactions are relatively inefficient,
neither has a significant effect on the other. Therefore, we are
able to separately pinpoint the transition of each reaction rate
Rij from deterministic to stochastic behavior as �ij

min. In the
event that at least one reaction is very effective with regard
to the X1 species, the reaction rates are influenced by one
another. Based on our conclusion that the rate equations are
accurate for both reaction rates if

� � max��12
min,�13

min� , �35�

and without performing a more complex analysis, the most
we can say about either reaction rate is that the transition
occurs somewhere between the two scales �12

min and �13
min.

We can thus set the upper bound for the transition point for
both reaction rates to be max��12

min ,�13
min�.

In the example presented in Fig. 5, the parameter ratios
are �12

− /�12
+ =0.01 and �13

− /�13
+ =500. Accordingly, r12 /g1

�1, as can be seen in the inset of Fig. 5�a�, and r13 /g1→1 in
the large system limit, as is apparent from the inset of Fig.
5�b�. The results obtained from Monte Carlo simulations,

indicate that in the limit ��min ��12
min ,�13

min�=102 both re-
actions are in the stochastic domain, where Rij ��2 �rij
���. When ��max ��12

min ,�13
min�=104, the mean-field ap-

proximation is valid for both reactions and Rij ��. In this
domain, the rate equations provide an accurate approxima-
tion of both rates R12 and R13.

B. Example: Formation of water molecules on surfaces

In a general reaction network, each reactive species may
participate in several reactions. Additionally, particles which
are products of one reaction may react with other species.
These features may complicate the equations that describe
such reaction networks. However, the same principles we
have used in the analysis of the simpler networks apply in
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FIG. 5. Steady-state reaction rates �a� R12 and �b� R13 vs system
size � in the three species reaction network. The solution of the rate
equation �solid line�, stochastic simulation �circles�, and the mo-
ment equations �dashed line� are shown. The inset plots show the
ratios �a� r12 /g1 and �b� r13 /g1, which approaches 1 in the large
system limit. If ��min ��12

min ,�13
min�, both reactions are in the sto-

chastic domain, Rij ��2 �rij ���. If ��max ��12
min ,�13

min�, the
mean-field approximation is valid for both reactions and Rij ��
�rij �const�. In this domain, the rate equations provide an accurate
approximation of both rates R12 and R13.
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the general case as well. As an example, we consider the
following set of chemical reactions:

H + H → H2,

H + O → OH,

H + OH → H2O,

O + O → O2.

This network is of much interest in interstellar chemistry. It
takes part in the formation of ice mantles on the surfaces of
dust grains in dense molecular clouds in the galaxy �56,57�.
Each reaction process is associated with its own set of pa-
rameters,

Rij → � �ii
+,�ii

− for i = j ,

�ij
+,�ij

−,� ji
+,� ji

− for i � j ,
� �36�

making a total of 12 parameters for this network. Following
the system-size approach, we are interested in the steady-
state solution of the moment equations for each of the reac-
tion rates Rij. Our system is described by a set of seven
moment equations �46�,

�NH
˙ � = GH − DH�NH� − 2RH,H − RH,O − RH,OH,

�NO
˙ � = GO − DO�NO� − 2RO,O − RH,O,

�NOH
˙ � = GOH − DOH�NOH� + RH,O − RH,OH,

�NH
2̇ � = GH + �2GH + DH��NH� − 2DH�NH

2 � − 4RH,H − RH,O

− RH,OH,

�NO
2̇ � = GO + �2GO + DO��NO� − 2DO�NO

2 � − 4RO,O − RH,O,

�NHNO
˙ � = GH�NO� + GO�NH� − �DH + DO + KH,O��NHNO� ,

�NHNOH
˙ � = GH�NOH� + GOH�NH� − �DH + DOH + KH,OH�


�NHNOH� . �37�

For simplicity, we have represented terms of the form
Kii��Ni

2�− �Ni�� by Rii and terms of the form Kij�NiNj� by Rij.
As in the previous system, it is possible to find simple

expressions for the reaction rates if, while solving for Rij we
treat all other reaction rates as constants. Using the param-
eters g, D, k, and r, we find that the reaction rates in this
system are

RH,H = gH
2 � 1

DH

1 −

rH,O + rH,OH

gH
�
 �2

�H,H
� , �38�

RO,O = gO
2 � 1

DO

1 −

rH,O

gO
�
 �2

�O,O
� , �39�

RH,O = gHgO� 1

DH

1 −

2rH,H + rH,OH

gH
� +

1

DO

1 −

2rO,O

gO
�



 �2

�H,O
� , �40�

RH,OH = gHgOH� 1

DH

1 −

2rH,H + rH,O

gH
� +

1

DOH

1 +

rH,O

gOH
�



 �2

�H,OH
� . �41�

The parameters �ii and �ij are given by Eqs. �16� and �23�,
respectively. Expressions �38�–�41� are similar to the ones
derived for the simpler systems. In a similar manner, we can
obtain the steady-state expressions for the reaction rates in
any system of reacting particles. The values of the competi-
tion terms relative to 1 determine the system-size depen-
dence of the reaction rates. However, as the reaction network
becomes more complex, it becomes increasingly difficult to
estimate these values based on the system parameters alone.
For a general system, therefore, we can find only an upper
limit for the transition value of the system size by applying
the conclusions of the preceding sections. To calculate a par-
ticular rate Rij, we must compare the system size to �min for
all the reactions which involve either Xi or Xj. If � is smaller
than all of them, then Rij is in the stochastic limit, where
Rij ��2. If � is larger than all the �min associated with Xi
and Xj, the mean-field approximation is valid and the rate
equations may be used to calculate Rij. Thus, for instance,
the rate equation solution for RO,O will be accurate if �
�max ��O,O

min ,�H,O
min �, and for RH,OH if ��max

��H,H
min ,�H,O

min ,�H,OH
min �.

V. SUMMARY AND DISCUSSION

Reaction networks exhibit deterministic behavior for large
systems in which the populations of reactive species are
large and fluctuations are negligible. In this case they can be
simulated using rate equations. In the limit of small systems,
the populations of reactive species are small and their dis-
crete nature becomes important. Therefore, fluctuations are
significant and stochastic methods are required for the simu-
lation of these systems.

In this paper we have addressed the problem of identify-
ing the conditions under which the rate equations may be
used to calculate reaction rates in a general system. This
question is important since the rate equations are much more
efficient in terms of computational resources than stochastic
methods. More specifically, the rate equations include one
equation for each reactive species. In the master equation,
the number of equations increases exponentially with the
number of species. To demonstrate this fact, consider a reac-
tion network which includes n reactive species, Xi, i
=1, . . . ,n. The master equation accounts for the time deriva-
tives of the probabilities P�N1 ,N2 , . . . ,Nn� that the popula-
tion sizes of species Xi, i=1, . . . ,n, will be given by Ni. In
numerical simulations the master equation must be truncated
in order to keep the number of equations finite. This is done

VALIDITY OF RATE EQUATION RESULTS FOR… PHYSICAL REVIEW E 78, 041105 �2008�

041105-9



by setting upper cutoffs Ni
max, i=1, . . . ,n on the population

sizes such that Ni=0,1 , . . . ,Ni
max. The number of equations is

thus NE=�i=1
n �Ni

max+1�. The truncated master equation is
valid as long as the probability to have population sizes be-
yond the cutoffs is vanishingly small. Clearly, NE grows ex-
ponentially with n. This severely limits the applicability of
the master equation. Similarly, the time required for Monte
Carlo simulations to converge is proportional to the volume
of the relevant state space, which increases exponentially
with the number of species. Several methods which combine
both stochastic and deterministic calculations have recently
been developed in order to maximize both the efficiency and
accuracy of the simulation. In Ref. �50� this problem is ad-
dressed by using an adaptive stochastic method, that dynami-
cally switches between deterministic and stochastic simula-
tions according to the population sizes of the reactive species
and the reaction rate constant. References �48,49� introduce
methods in which a reaction network is partitioned into fast
reactions and slow reactions. The fast reactions, in which
fluctuations are negligible, are integrated using deterministic
equations �or Langevin equations�, while the slow reactions
are simulated using stochastic methods. Both these ap-
proaches rely on intuitive criteria for identifying the reac-
tions which require the use of stochastic calculations. Addi-
tionally, the methods of Refs. �50,49� require reevaluation of
the need for stochastic calculations at every step of the simu-
lation.

We have used the system size approach to formulate well-
defined criteria for the crossover from deterministic to sto-
chastic behavior in networks of chemical reactions. In our
analysis it is assumed that the reactants are distributed ho-
mogeneously in space or are constantly stirred. Using this

approach we identified the range of conditions under which
the rate equations provide accurate results for the reaction
rates in the network. These conditions are expressed in terms
of the rate constants of the network. They can thus be evalu-
ated prior to the actual execution of the simulation. There-
fore, these conditions enable one to choose the proper simu-
lation method for the given network.

For simple systems involving a single reaction, we iden-
tify several characteristic scales defined by the rate constants
of the system. The system is found to exhibit deterministic
behavior as long as its size is larger than the smallest of these
scales. In more complex networks, each species may partici-
pate in more than one reaction. Each of these reactions is
associated with several characteristic scales. However, the
deterministic regime for a given reaction is not fully defined
by these scales alone, rather the effects of competing reac-
tions must be taken into account as well. In general, these
effects cannot be evaluated a priori from the system param-
eters, since they depend on the relative efficiency of the dif-
ferent reactions. For a given reaction in a general network,
we can only identify an upper bound for the system size at
which the crossover between deterministic and stochastic be-
havior takes place. As long as the system is larger than this
upper bound, the rate equations are suitable for the calcula-
tion of the rate of this reaction.

ACKNOWLEDGMENTS

We thank Baruch Barzel for helpful discussions. This
work was supported by the Israel Science Foundation, the
Adler Foundation for Space Research and the US-Israel Bi-
national Science Foundation.

�1� K. A. Connors, Chemical Kinetics: The Study of Reaction
Rates in Solution �Wiley, New York, 1990�.

�2� J. D. Murray, Mathematical Biology �Springer, Berlin, 1989�.
�3� Yu. Suchorski, R. Imbihl, and V. K. Medvedev, Surf. Sci. 401,

392 �1998�.
�4� Yu. Suchorski, J. Beben, E. W. James, J. W. Evans, and R.

Imbihl, Phys. Rev. Lett. 82, 1907 �1999�.
�5� Yu. Suchorski, J. Beben, R. Imbihl, E. W. James, D.-J. Liu, and

J. W. Evans, Phys. Rev. B 63, 165417 �2001�.
�6� V. Johanek, M. Laurin, A. W. Grant, B. Kasemo, C. R. Henry,

and J. Libuda, Science 304, 1639 �2004�.
�7� M. Pineda, R. Imbihl, L. Schimansky-Geier, and Ch. Zülicke,

J. Chem. Phys. 124, 044701 �2006�.
�8� D.-J. Liu and J. W. Evans, J. Chem. Phys. 117, 7319 �2002�.
�9� L. Spitzer, Physical Processes in the Interstellar Medium

�Wiley, New York, 1978�.
�10� T. W. Hartquist and D. A. Williams, The Chemically Con-

trolled Cosmos �Cambridge University Press, Cambridge, UK,
1995�.

�11� A. G. G. M. Tielens, The Physics and Chemistry of the Inter-
stellar Medium �Cambridge University Press, Cambridge, UK,
2005�.

�12� T. I. Hasegawa, E. Herbst, and C. M. Leung, Astrophys. J.,
Suppl. Ser. 82, 167 �1992�.

�13� E. Herbst, Annu. Rev. Phys. Chem. 46, 27 �1995�.
�14� R. J. Gould and E. E. Salpeter, Astrophys. J. 138, 393 �1963�.
�15� D. Hollenbach and E. E. Salpeter, J. Chem. Phys. 53, 79

�1970�.
�16� D. Hollenbach and E. E. Salpeter, Astrophys. J. 163, 155

�1971�.
�17� D. Hollenbach, M. W. Werner, and E. E. Salpeter, Astrophys.

J. 163, 165 �1971�.
�18� A. G. G. M. Tielens and W. Hagen, Astron. Astrophys. 114,

245 �1982�.
�19� S. B. Charnley, A. G. G. M. Tielens, and S. D. Rodgers, As-

trophys. J. 482, L203 �1997�.
�20� P. Caselli, T. I. Hasegawa, and E. Herbst, Astrophys. J. 495,

309 �1998�.
�21� O. M. Shalabiea, P. Caselli, and E. Herbst, Astrophys. J. 502,

652 �1998�.
�22� H. H. McAdams and A. Arkin, Proc. Natl. Acad. Sci. U.S.A.

94, 814 �1997�.
�23� A. Arkin, J. Ross, and H. H. McAdams, Genetics 149, 1633

�1998�.
�24� J. Paulsson, Nature �London� 427, 415 �2004�.
�25� M. B. Elowitz, A. J. Levine, E. D. Siggia, and P. S. Swain,

Science 297, 1183 �2002�.
�26� E. M. Ozbudak, M. Thattai, I. Kurtser, A. D. Grossman, and A.

ADINA LEDERHENDLER AND OFER BIHAM PHYSICAL REVIEW E 78, 041105 �2008�

041105-10



van Oudenaarden, Nat. Genet. 31, 69 �2002�.
�27� O. Biham, I. Furman, V. Pirronello, and G. Vidali, Astrophys.

J. 553, 595 �2001�.
�28� N. J. B. Green, T. Toniazzo, M. J. Pilling, D. P. Ruffle, N. Bell,

and T. W. Hartquist, Astron. Astrophys. 375, 1111 �2001�.
�29� N. G. van Kampen, Stochastic Processes in Physics and

Chemistry �North-Holland, Amsterdam, 1981�.
�30� C. W. Gardiner, Handbook of Stochastic Methods �Springer,

Berlin, 2004�.
�31� J. Paulsson and M. Ehrenberg, Phys. Rev. Lett. 84, 5447

�2000�.
�32� D. T. Gillespie, J. Comput. Phys. 22, 403 �1976�.
�33� D. T. Gillespie, J. Phys. Chem. 81, 2340 �1977�.
�34� M. E. J. Newman and G. T. Barkema, Monte Carlo Methods in

Statistical Physics �Clarendon, Oxford, 1999�.
�35� S. B. Charnley, Astrophys. J. 562, L99 �2001�.
�36� T. Stantcheva, V. I. Shematovich, and E. Herbst, Astron. As-

trophys. 391, 1069 �2002�.
�37� T. Stantcheva and E. Herbst, Mon. Not. R. Astron. Soc. 340,

983 �2003�.
�38� D. T. Gillespie, J. Chem. Phys. 115, 1716 �2001�.
�39� H. Salis and Y. N. Kaznessis, J. Chem. Phys. 123, 214106

�2005�.
�40� Y. Cao, D. T. Gillespie, and L. R. Petzold, J. Chem. Phys. 124,

044109 �2006�.
�41� A. Lipshtat and O. Biham, Phys. Rev. Lett. 93, 170601 �2004�.

�42� B. Barzel, O. Biham, and R. Kupferman, Phys. Rev. E 76,
026703 �2007�.

�43� B. Barzel, O. Biham, and R. Kupferman, Multiscale Model.
Simul. 6, 963 �2007�.

�44� A. Lipshtat and O. Biham, Astron. Astrophys. 400, 585
�2003�.

�45� B. Barzel and O. Biham, Astrophys. J. 658, L37 �2007�.
�46� B. Barzel and O. Biham, J. Chem. Phys. 127, 144703 �2007�.
�47� C. A. Gómez-Uribe and G. C. Verghese, J. Chem. Phys. 126,

024109 �2007�.
�48� E. L. Haseltine and J. B. Rawlings, J. Chem. Phys. 117, 6959

�2002�.
�49� J. Puchalka and A. M. Kierzek, Biophys. J. 86, 1357 �2004�.
�50� K. Vasudeva and U. S. Bhalla, Bioinformatics 20, 78 �2004�.
�51� U. Kummer, B. Krajnc, J. Pahle, A. K. Green, C. J. Dixon, and

M. Marhl, Biophys. J. 89, 1603 �2005�.
�52� O. Biham, I. Furman, N. Katz, V. Pirronello, and G. Vidali,

Mon. Not. R. Astron. Soc. 296, 869 �1998�.
�53� O. Biham and A. Lipshtat, Phys. Rev. E 66, 056103 �2002�.
�54� J. Krug, Phys. Rev. E 67, 065102�R� �2003�.
�55� I. Lohmar and J. Krug, Mon. Not. R. Astron. Soc. 370, 1025

�2006�.
�56� H. Cuppen and E. Herbst, Astrophys. J. 668, 294 �2007�.
�57� D. A. Williams, T. W. Hartquist, and D. C. B. Whittel, Mon.

Not. R. Astron. Soc. 258, 599 �1992�.

VALIDITY OF RATE EQUATION RESULTS FOR… PHYSICAL REVIEW E 78, 041105 �2008�

041105-11


